19,847 research outputs found

    Learned versus Hand-Designed Feature Representations for 3d Agglomeration

    Full text link
    For image recognition and labeling tasks, recent results suggest that machine learning methods that rely on manually specified feature representations may be outperformed by methods that automatically derive feature representations based on the data. Yet for problems that involve analysis of 3d objects, such as mesh segmentation, shape retrieval, or neuron fragment agglomeration, there remains a strong reliance on hand-designed feature descriptors. In this paper, we evaluate a large set of hand-designed 3d feature descriptors alongside features learned from the raw data using both end-to-end and unsupervised learning techniques, in the context of agglomeration of 3d neuron fragments. By combining unsupervised learning techniques with a novel dynamic pooling scheme, we show how pure learning-based methods are for the first time competitive with hand-designed 3d shape descriptors. We investigate data augmentation strategies for dramatically increasing the size of the training set, and show how combining both learned and hand-designed features leads to the highest accuracy

    Wave Mechanics of Two Hard Core Quantum Particles in 1-D Box

    Full text link
    The wave mechanics of two impenetrable hard core particles in 1-D box is analyzed. Each particle in the box behaves like an independent entity represented by a {\it macro-orbital} (a kind of pair waveform). While the expectation value of their interaction, ,vanishesforeverystateoftwoparticles,theexpectationvalueoftheirrelativeseparation,, vanishes for every state of two particles, the expectation value of their relative separation, , satisfies ≥λ/2 \ge \lambda/2 (or q≥π/dq \ge \pi/d, with 2d=L2d = L being the size of the box). The particles in their ground state define a close-packed arrangement of their wave packets (with =λ/2 = \lambda/2, phase position separation Δϕ=2π\Delta\phi = 2\pi and momentum ∣qo∣=π/d|q_o| = \pi/d) and experience a mutual repulsive force ({\it zero point repulsion}) fo=h2/2md3f_o = h^2/2md^3 which also tries to expand the box. While the relative dynamics of two particles in their excited states represents usual collisional motion, the same in their ground state becomes collisionless. These results have great significance in determining the correct microscopic understanding of widely different many body systems.Comment: 12 pages, no figur

    Learning Face Age Progression: A Pyramid Architecture of GANs

    Full text link
    The two underlying requirements of face age progression, i.e. aging accuracy and identity permanence, are not well studied in the literature. In this paper, we present a novel generative adversarial network based approach. It separately models the constraints for the intrinsic subject-specific characteristics and the age-specific facial changes with respect to the elapsed time, ensuring that the generated faces present desired aging effects while simultaneously keeping personalized properties stable. Further, to generate more lifelike facial details, high-level age-specific features conveyed by the synthesized face are estimated by a pyramidal adversarial discriminator at multiple scales, which simulates the aging effects in a finer manner. The proposed method is applicable to diverse face samples in the presence of variations in pose, expression, makeup, etc., and remarkably vivid aging effects are achieved. Both visual fidelity and quantitative evaluations show that the approach advances the state-of-the-art.Comment: CVPR 2018. V4 and V2 are the same, i.e. the conference version; V3 is a related but different work, which is mistakenly submitted and will be submitted as a new arXiv pape

    A simple sandpile model of active-absorbing state transitions

    Full text link
    We study a simple sandpile model of active-absorbing state transitions in which a particle can hop out of a site only if the number of particles at that site is above a certain threshold. We show that the active phase has product measure whereas nontrivial correlations are found numerically in the absorbing phase. It is argued that the system relaxes to the latter phase slower than exponentially. The critical behavior of this model is found to be different from that of the other known universality classes.Comment: Revised version. To appear in Phys. Rev.

    EARL: Eye-on-Hand Reinforcement Learner for Dynamic Grasping with Active Pose Estimation

    Full text link
    In this paper, we explore the dynamic grasping of moving objects through active pose tracking and reinforcement learning for hand-eye coordination systems. Most existing vision-based robotic grasping methods implicitly assume target objects are stationary or moving predictably. Performing grasping of unpredictably moving objects presents a unique set of challenges. For example, a pre-computed robust grasp can become unreachable or unstable as the target object moves, and motion planning must also be adaptive. In this work, we present a new approach, Eye-on-hAnd Reinforcement Learner (EARL), for enabling coupled Eye-on-Hand (EoH) robotic manipulation systems to perform real-time active pose tracking and dynamic grasping of novel objects without explicit motion prediction. EARL readily addresses many thorny issues in automated hand-eye coordination, including fast-tracking of 6D object pose from vision, learning control policy for a robotic arm to track a moving object while keeping the object in the camera's field of view, and performing dynamic grasping. We demonstrate the effectiveness of our approach in extensive experiments validated on multiple commercial robotic arms in both simulations and complex real-world tasks.Comment: Presented on IROS 2023 Corresponding author Siddarth Jai
    • …
    corecore